Estructura de Computadores

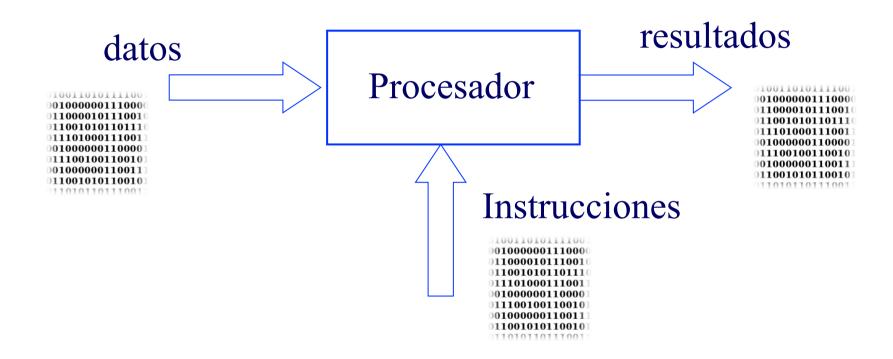
Tema 2. Representación de la información

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

Contenido

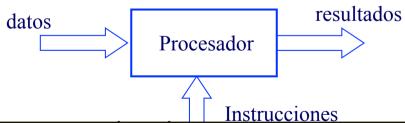

- Repaso del concepto de computador
- Introducción a la representación de la información
 - ☐ Tipos de información a representar
 - ☐ Sistemas posicionales
- Representaciones
 - □ Alfanuméricas
 - □ Numéricas sin signo y con signo
 - □ Numéricas: coma flotante
 - Estándar IEEE 754

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

¿Qué es un computador?

CLASÉS PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

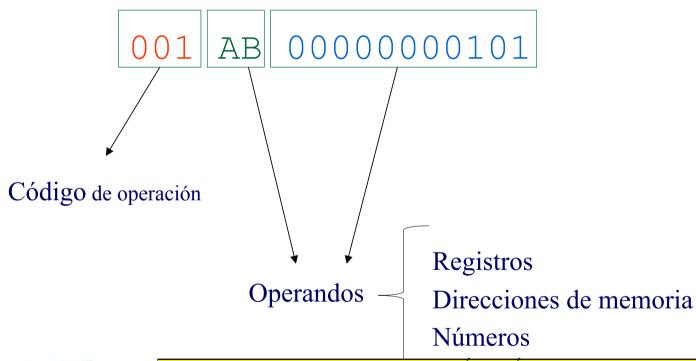

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

ARCOS

Estructura de Computadores

Tipos de información

- Instrucciones máquina
- Datos
 - Caracteres
 - Números naturales
 - □ Números enteros (con signo)
 - □ Números reales



Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

Formato de una instrucción máquina

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

- Un número se define por una cadena de dígitos, estando afectado cada uno de ellos por un factor de escala que depende de la posición que ocupa en la cadena.
- Dada una base de numeración b, un número:

$$X = (\cdots x_2 \ x_1 \ x_0, x_{-1} \ x_{-2} \ \cdots)_b$$

 $Con \ 0 \le x_i < b$

Su valor decimal es X:

$$V(X) = \sum_{i=0}^{+\infty} b^{i} \cdot x_{i} = \cdots b^{2} \cdot x_{2} + b^{1} \cdot x_{1} + b^{0} \cdot x_{0} + b^{-1} \cdot x_{-1} + b^{-2} \cdot x_{-2} \cdots$$

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Binario

$$X = 1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1$$
... $2^7 \quad 2^6 \quad 2^5 \quad 2^4 \quad 2^3 \quad 2^2 \quad 2^1 \quad 2^0$

Hexadecimal

$$Y = 0x$$
 F 1 F A 8 0
... $16^5 16^4 16^3 16^2 16^1 16^0$

- □ De binario a hexadecimal:
 - Agrupar de 4 en 4 bits, de derecha a izquierda
 - Cada 4 bits es el valor del dígito hexadecimal
 - Ej.: 1 0 1 0 0 1 0 1 0 1 0 0 5

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

■ ¿Cuántos 'valores' (códigos) se pueden representar con n bits?

■ ¿Cuántos bits se necesitan para representar m 'valores'?

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

- ¿Cuántos 'valores' (códigos) se pueden representar con n bits?
 - □ 2ⁿ
 - □ Ej.: con 8 bits se pueden representar 256 códigos posibles
- ¿Cuántos bits se necesitan para representar m 'valores'?
 - \square Log₂(n) por exceso
 - □ Ej.: para representar 35 valores se necesitan 6 bits
- Con n bits
 - ☐ El valor mínimo representable es 0

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

■ Representar 342 en binario:

pesos	256	128	64	32	16	8	4	2	1
	?	?	?	?	?	?	?	?	?

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

■ Representar 342 en binario:

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Calcular el valor decimal de 23 unos:

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

■ Calcular el valor decimal de 23 unos:

$$X = 2^{23} - 1$$

Truco:

 2^{23}

Cartagena99

Ejemplo de suma

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Prefijos

Nombre	Abr	Factor	SI
Kilo	K	$2^{10} = 1,024$	$10^3 = 1,000$
Mega	M	$2^{20} = 1,048,576$	$10^6 = 1,000,000$
Giga	G	$2^{30} = 1,073,741,824$	$10^9 = 1,000,000,000$
Tera	T	$2^{40} = 1,099,511,627,776$	$10^{12} = 1,000,000,000,000$
Peta	P	$2^{50} = 1,125,899,906,842,624$	$10^{15} = 1,000,000,000,000,000$
Exa	E	$2^{60} = 1,152,921,504,606,846,976$	$10^{18} = 1,000,000,000,000,000,000$
Zetta	Z	$2^{70} = 1,180,591,620,717,411,303,424$	$10^{21} = 1,000,000,000,000,000,000,000$
Yotta	Y	$2^{80} = 1,208,925,819,614,629,174,706,176$	$10^{24} = 1,000,000,000,000,000,000,000,000$

- 1 KB = 1024 bytes, pero en el SI es 1000 bytes
- Los fabricantes de disco duros y en telecomunicaciones emplea el SI.
 - ☐ Un disco duro de 30 GB almacena 30 x 10⁹ bytes

Cartagena99

CLASES PARTICULARES, TUTÓRÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

■ ¿Cuántos bytes tiene un disco duro de 200 GB?

■ ¿Cuántos bytes por segundo transmite mi ADSL de 20 Mb?

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

Solución

- ¿Cuántos bytes tiene un disco duro de 200 GB?
 - □ 200 GB = 200 * 109bytes = 186.26 Gigabytes
- ¿Cuántos bytes por segundo transmite mi ADSL de 20 Mb?
 - \Box B \rightarrow Byte
 - \Box b \rightarrow bit.
 - □ 20 Mb = $20 * 10^6$ bits = $20 * 10^6 / 8$ bytes = 2.38 Megabytes por segundo

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

Tamaños privilegiados

- Octeto, carácter o byte
 - □ Representación de un carácter
 - ☐ Típicamente 8 bits
- Palabra
 - ☐ Información manipulada en paralelo en el interior del computador
 - ☐ Típicamente 32, 64 bits
- Media palabra
- Doble palabra

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

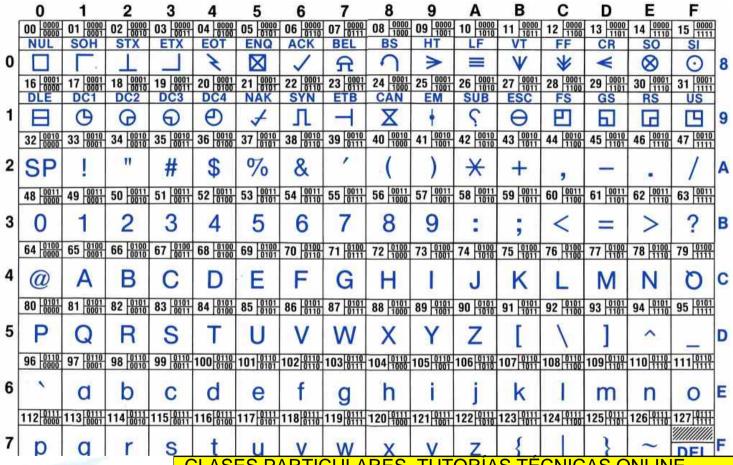
Representación alfanumérica

- Cada carácter se codifica con un octeto.
- Para n bits \Rightarrow 2ⁿ caracteres representables:
 - □ 6 bits (64 caracteres)
 - 26 letras (A...Z), 10 números (0...9), puntuación(.,;:...) y especiales (+ [...)
 - Ejemplo: *BCDIC*
 - \Box 7 bits (128 caracteres)
 - añade mayúsculas y minúsculas y caracteres de control de periféricos
 - Ejemplo: *ASCII*
 - \square 8 bits (256 caracteres)
 - añade letras acentuadas, ñ, caracteres semigráficos
 - Ejemplo: *EBCDIC* y *ASCII ex(10dido* (actual)
 - □ <u>16 bits</u> (34.168 caracteres)
 - distintos idiomas (chino, árabe,...)

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

Representación de caracteres


- Sistemas
 - □ EBCDIC (8 bits)
 - □ ASCII (8 bits)
 - ☐ Unicode (8 bits)
- Correspondencia de un código numérico a cada carácter representado

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

Ejemplo: tabla ASCII (7 bits)

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

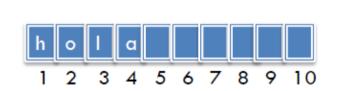
Código ASCII. Propiedades

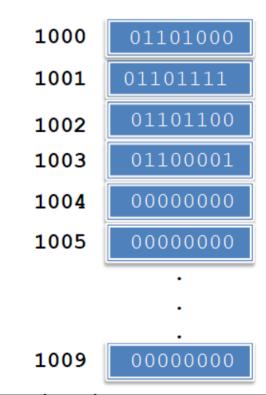
- Caracteres de '0' a '9' son consecutivos
 - ☐ Simplifica comprobación de dígito
 - ☐ Simplifica la operación de obtener el valor numérico
 - □ ¿Por qué?
- Mayúsculas y minúsculas se diferencia en un bit
 - ☐ Simplifica conversión de mayúsculas a minúsculas
- Caracteres de control situados en un rango
 - ☐ Simplifica su interpretación

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

Cadenas de caracteres


- Cadenas de longitud fija
- Cadenas de longitud variable con separador
- Cadenas de longitud variable con longitud en cabecera



CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

Cadenas de longitud fija

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Cadenas con longitud en la cabecera

1000	00000100
1001	01101000
1002	01101111
1003	01101100
1004	01100001

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Cadenas con separador

1000	01101000
1001	01101111
1002	01101100
1003	01100001
1004	00000000

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Representación numérica

- Clasificación de números:
 - □ Naturales: 0, 1, 2, 3, ...
 - □ Enteros: ... -3, -2, -1, 0, 1, 2, 3,
 - \square Racionales: fracciones (5/2 = 2,5)
 - □ Irracionales: $2^{1/2}$, π , e, ...
- Conjuntos infinitos y espacio de representación finito
 - ☐ Imposible representar todos

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

Problemas de la representación de números en el computador

- Cualquier conjunto numérico es infinito
- Números irracionales no son representables por requerir infinitos dígitos
- Espacio material de representación finito
- Una secuencia de n bits permite representar 2ⁿcódigos distintos

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

Características de la representación usada

- Rango de representación:
 - ☐ Intervalo entre el menor y mayor no representable
- Precisión:
 - □ No todos los números son representables de forma exacta
- Resolución de representación:
 - □ Diferencia entre un nº representable y el inmediato siguiente
 - ☐ Resolución = máximo error cometido en la representación
 - ☐ La resolución puede ser:
 - Constante a lo largo de todo el rango
 - Variable a lo largo del rango (coma flotante)

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

Sistemas de representación binarios más usados

- Nº naturales (sin signo)
 - Coma fija sin signo o binario puro
- Números enteros (con signo):
 - Signo magnitud
 - Complemento a uno 1
 - Complemento a dos
 - Representación en exceso o sesgada
- No reales

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Coma fija sin signo o binario puro

Sistema posicional con base 2 y sin parte fraccionaria.

$$V(X) = \sum_{i=0}^{n-1} 2^i \cdot X_i$$

- Rango de representación: [0, 2ⁿ-1]
- Resolución: 1 unidad

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Representación de números con signo

- Signo-magnitud
- Complemento a uno
- Complemento a dos
- Representación en exceso

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

Signo magnitud

Se reserva un bit (S) para el signo $(0 \Rightarrow +; 1 \Rightarrow -)$

Si
$$x_{n-1} = 0$$
 $V(X) = \sum_{i=0}^{n-2} 2^{i} \cdot x_{i}$

Si $x_{n-1} = 1$ $V(X) = -\sum_{i=0}^{n-2} 2^{i} \cdot x_{i}$
 $\Rightarrow V(X) = (1 - 2 \cdot x_{n-1}) \cdot \sum_{i=0}^{n-2} 2^{i} \cdot x_{i}$

Rango de representación: $[-2^{n-1}+1, 2^{n-1}-1]$

artagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- \blacksquare Si n = 6 bits
- El número 7 se presenta como: 00111 □ El primer bit indica el signo
- El número -7 se representa como: 10111 □ El primer bit indica el signo

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

34

■ ¿Se puede representar el número 745 en binario usando 10 bits con representación en signo-magnitud?

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

- ¿Se puede representar el número 745 en binario usando 10 bits con representación en signo-magnitud?
- Solución:
 - □ Con 10 bits el rango de representación en signo-magnitud es: $[-2^9+1,...,-0,+0,....2^9-1] \Rightarrow [-511,511]$ Por tanto, no se puede representar el 745

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

36

Problemas de la representación en signomagnitud

- Doble representación del 0:
 - \Box Con n = 5 bits:
 - 00000 representa el 0
 - 10000 representa el 0
- Circuitos diferentes para sumas y resta

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

Complemento a uno

■ Número positivo:

☐ Se representa en binario puro con n-1 bits

$$V(X) = \sum_{i=0}^{n-1} 2^{i} \cdot x_{i} = \sum_{i=0}^{n-2} 2^{i} \cdot x_{i}$$

• Rango de representación: [0, 2ⁿ⁻¹ -1]

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

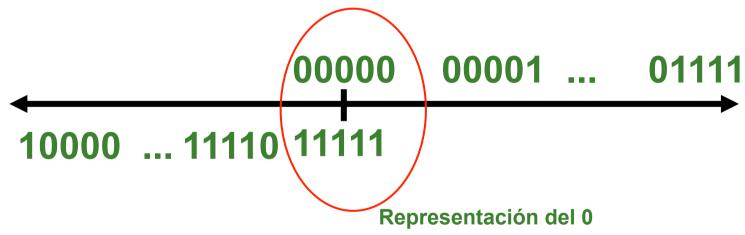
. _ _ <u>- - -</u> . _ <u>- - -</u> . . _ .

Complemento a uno

Número negativo:

- \square El número X < 0 se representa como $2^n X 1$
 - Se complementa: cambian los 0's por 1's y los 1's por 0's
 - El resultado es un número que tiene un 1 en el bit superior
 - Este bit no es un bit de signo, forma parte del valor del número

$$V(X) = -2^{n} + \sum_{i=0}^{n-1} 2^{i} \cdot x_{i} -1$$


Panço de representación: [2n-1+1 0] CLASES PARTICULARES, TUTORIAS TÉCNICAS ONLINE

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

39

Complemento a uno

Los números positivos tienen 0s a la izquierda y los negativos 1s

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

Ejemplo

- \blacksquare Para n = 5 bits
- \blacksquare ¿Cómo se representa X = 5?
 - ☐ Como es positivo, en binario puro
 - **•** 00101
- ¿Cómo se representa X = -5?
 - □ Como es negativo, se complementa el valor 5 (00101)
 - **1**1010
- ¿Cuál es el valor de 00111 en complemento a 2?
 - □ Como es positivo, su valor es directamente 7
- ¿Cuál es el valor de 11000 en complemento a 2?
 - Como es negativo, se complementa y se obtiene 00111 (7)
 CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE
 LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- \blacksquare Para n = 5 bits
- $\blacksquare \text{ Sea } X = 5$
 - \Box En complemento a uno = 00101
- \blacksquare Sea Y = 7
 - \Box En complemento a uno = 00111

$$X = 00101$$

$$Y = \underline{00111} +$$

$$X+Y = 01100$$

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- Para n = 5 bits
- $\blacksquare \quad \text{Sea } X = -5$
 - ☐ En complemento a uno = complemento de 00101: 11010
- \blacksquare Sea Y = -7
 - ☐ En complemento a uno = complemento de 00111: 11000
- \blacksquare $\xi X + Y?$

$$-X = 11010$$

$$-Y = \underline{11000+}$$

$$-(X+Y) = 110010$$
 Se produce un acarreo, se suma y se desprecia

1001

Cartagena99

CLÁSES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

¿Porqué se desprecia el acarreo y se suma al resultado?

- -X se representa como $2^n X 1$
- -Y se representa como $2^n Y 1$
- -(X + Y) se representa como $2^n (X+Y) 1$
- \blacksquare Cuando sumamos directamente -X Y se obtiene

$$-X = 2^n - X - 1$$

$$-Y = 2^n - Y - 1$$

$$-(X+Y) = 2^n + 2^n - (X+Y) - 2$$

Se corrige el resultado despreciando el acarreo

2n (bit de acarreo) y se suma al resultado CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

Problemas del complemento a uno

- Doble representación del 0
- \blacksquare Con n = 5 bits
 - □ 00000 representa el 0
 - □ 11111 representa el 0
- Rango de representación para positivos: [0, -2ⁿ⁻¹-1]
- Rango de representación para negativos: [-(2ⁿ⁻¹-1), 0]

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

- Número positivo:
 - Se representa en binario puro con n-1 bits

$$V(X) = \sum_{i=0}^{n-1} 2^{i} \cdot x_{i} = \sum_{i=0}^{n-2} 2^{i} \cdot x_{i}$$

Rango de representación: [0, 2ⁿ⁻¹ -1]

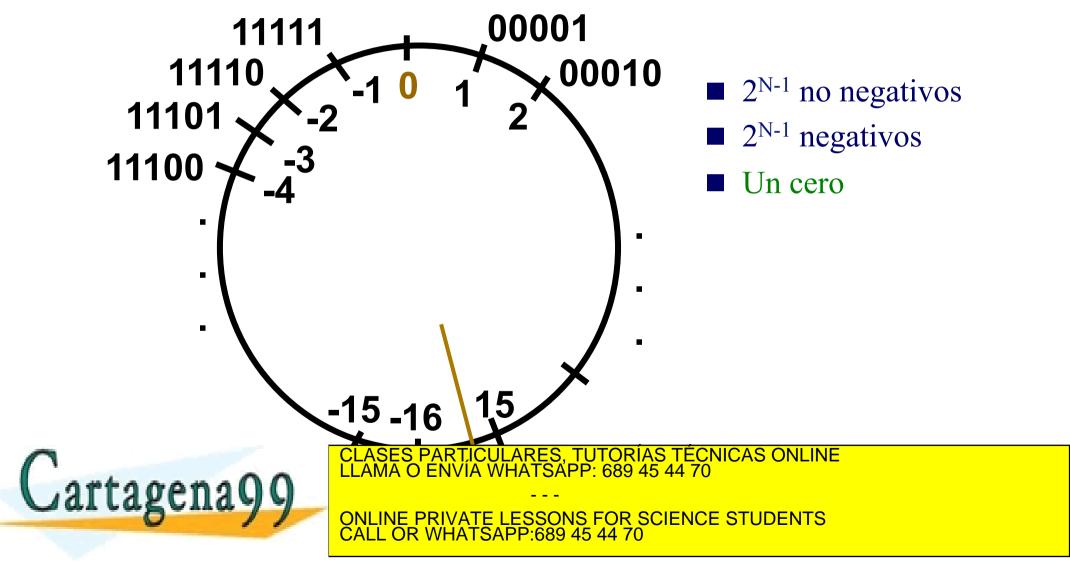
Cartagena 99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

■ Número negativo:

- \square se complementa a la base. El número X< 0 se representa como $2^n X$
- □ El bit superior es 1: No es un bit de signo, forma parte del valor del número

$$V(X) = -2^n + \sum_{i=0}^{n-1} 2^i \cdot y_i$$



CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

- Truco: Si X > 0, C a 2 de X = XSi X < 0, C a 2 de -X = C a 1 de X + 1
 - \blacktriangleright Ejemplo: Para n=5 \Rightarrow 00011 = +3
 - \blacktriangleright Ejemplo: Para n=5 el -3 = 11101
 - ▶ $11101 \Rightarrow \text{Para ob}(10\text{er su valor en C a 2, es el valor negativo de})$ C a 1(11101) + 1 = 00010 + 1 = 00011
 - Es decir -3
 - Rango de representación: [-2ⁿ⁻¹, 2ⁿ⁻¹-1]
 - Resolución: 1 unidad

CLASES PARTICULARES, TUTORIAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Complemento a dos para 32 bits

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

- \blacksquare Para n = 5 bits
- $\blacksquare \text{ Sea } X = 5$
 - ☐ En complemento a dos= 00101
- \blacksquare Sea Y = 7
 - \Box En complemento a uno = 00111

$$X = 00101$$

$$Y = \underline{00111} +$$

$$X+Y = 01100$$

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- Para n = 5 bits
- $\blacksquare \quad \text{Sea } X = -5$
 - \square En complemento a dos= complemento de 00101: 11010 + 1 = 11011
- \blacksquare Sea Y = -7
 - \Box En complemento a uno = complemento de 00111: 11000 +1 = 11001
- \blacksquare $\xi X + Y?$
 - -X = 11011
 - $-Y = \underline{11001} +$
 - -(X+Y) = 110100 Se produce un acarreo: se desprecia

■ El valor de 10100. Su valor en complemento a dos = el valor negativo de su

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

- \blacksquare Para n = 5 bits
- \blacksquare Sea X = 8
 - ☐ En complemento a dos= 01000
- \blacksquare Sea Y = 9
 - \Box En complemento a uno = 01001

$$X = 01000$$

$$Y = 01001 +$$

$$X+Y = 10001$$

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

- \blacksquare Para n = 5 bits
- $\blacksquare \quad \text{Sea } X = -8$
 - \square En complemento a dos= complemento de 01000: 10111 + 1 = 11000
- $\blacksquare \quad \text{Sea Y} = -9$
 - \Box En complemento a uno = complemento de 01001: 10110 +1 = 10111
- \blacksquare $\xi X + Y?$
 - -X = 11000
 - -Y = 10111+
 - -(X+Y) = 101111

Se produce un acarreo: se desprecia

■ El valor 01111. como es positivo ⇒ desbordamiento

Cartagena99

CLÁSES PARTICULARES, TUTORIAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

-

Desbordamientos en complemento a dos

- Suma de dos negativos ⇒ positivo
- Suma de dos positivos ⇒ negativo

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

Extensión de signo en complemento a dos

- Cómo pasar de n bits a m bits, siendo n < m?
- Ejemplo:
 - \Box n = 4, m = 8
 - \square Si X = 0110 con 4 bits \Rightarrow X = 00000110 con 8 bits
 - \square Si X = 1011 con 4 bits \Rightarrow X = 11111011 con 8 bits

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

Representación en exceso (2ⁿ⁻¹-1)

■ Con n bits, se suma 2ⁿ⁻¹-1al valor a representar

$$V(X) = \sum_{i=0}^{n-1} 2^{i} \cdot x_{i} - (2^{n-1} - 1)$$

- Rango de representación: [-2ⁿ⁻¹+1, 2ⁿ-1]
- Resolución: 1 unidad

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

Ejemplo comparativo (3 bits)

Decimal	Binario Puro	Signo magnitud	Complemento a uno	Complemento a dos	Exceso 3
+7	111	N.D.	N.D.	N.D.	N.D.
+6	110	N.D.	N.D.	N.D.	N.D.
+5	101	N.D.	N.D.	N.D.	N.D.
+4	100	N.D.	N.D.	N.D.	111
+3	011	011	011	011	110
+2	010	010	010	010	101
+1	001	001	001	001	100
+0	000	000	000	000	011
-0	N.D.	100	111	N.D.	N.D.
-1	N.D.	101	110	111	010
-2	N.D.	110	101	110	001
-3	N.D.	111	100	101	000
-4	N.D.	N.D.	N.D.	100	N.D.
-5	N.D.	N.D.	N.D.	N.D.	N.D.

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Ejemplo

- Dado el valor 110110 (6 bits)
- ¿Cuál es su valor?
- En binario puro = $2^5 + 2^4 + 2^2 + 2^1 = 52_{(10)}$
- En signo-magnitud = $-(2^4 + 2^2 + 2^1) = -21_{(10)}$
- En complemento a uno
 - \square Se complementa $\Rightarrow 001001 = 9_{(10)}$
 - \Box Su valor es -9₍₁₀₎
- En complemento a dos
 - \square Se complementa \Rightarrow 001001 = 9 y se suma 1 = 001010 = 10
 - \Box Su valor es -10₍₁₀₎
- En exceso $(2^{6-1} 1 = 31)$

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

Ejemplo

- Indique la representación de los siguientes números, razonando brevemente su respuesta:
 - 1. -17 en signo magnitud con 6 bits
 - 2. +16 en complemento a dos con 5 bits
 - 3. -16 en complemento a dos con 5 bits
 - 4. +15 en complemento a uno con 6 bits

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

- 110001
- Con 5 bits no es representable en C2: $[-2^{5-1}, 2^{5-1}-1] = [-16, 15]$
- 10000 3.
- 001111

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Ejemplo

- Usando 5 bits para representarlo, haga las siguientes sumas en complemento a uno:
 - 4 + 12
 - 4 12
 - -4 -12

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- Usando 5 bits en complemento a uno:
 - 4 + 12

00100 01100

 $10000 \Rightarrow -15 \Rightarrow \text{overflow}$

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- Usando 5 bits en complemento a uno:
 - b) 4 12

00100 10011

 $10111 \Rightarrow -8$

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

■ Usando 5 bits en complemento a uno:

c) -4 - 12

11011

10011

 $101110 \Rightarrow \text{necesita 6 bits} \Rightarrow \text{overflow}$

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Repaso

- Con N bits se pueden representar:
 - □ 2^N códigos distintos
 - □ Enteros sin signo:

a

$$2^{N} - 1$$

para
$$N=32$$
, $2^{N}-1 = 4.294.967.295$

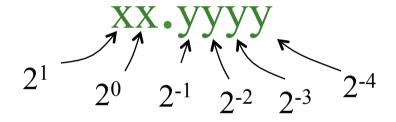
☐ Enteros con signo en complemento a dos

$$-2^{(N-1)}$$
 a $2^{(N-1)} - 1$ para N=32, $2^{(N-1)} = 2.147.483.648$

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

Otras necesidades de representación


- ¿Cómo representar?
 - Números muy grandes: $30.556.926.000_{(10)}$
 - Números muy pequeños: $0.000000000529177_{(10)}$
 - Números con decimales: 1,58567

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Representación de fracciones con representación binaria en coma fija

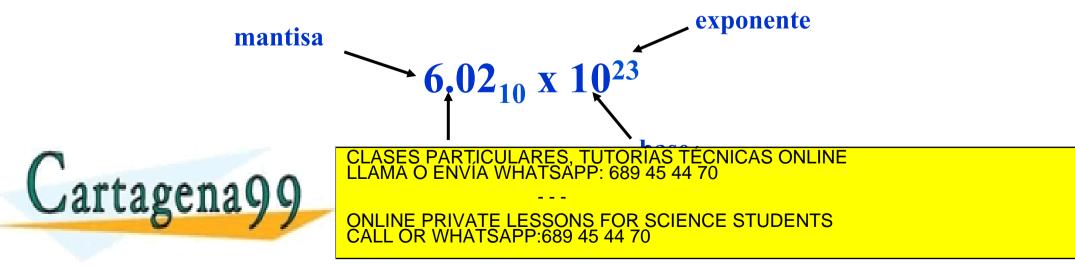
Ejemplo de representación con 6 bits:

- $10,1010_{(2} = 1x2^{1} + 1x2^{-1} + 1x2^{-3} = 2.62510$
- Asumiendo esta coma fija el rango sería:
 - 0 a 3.9375 (casi 4)

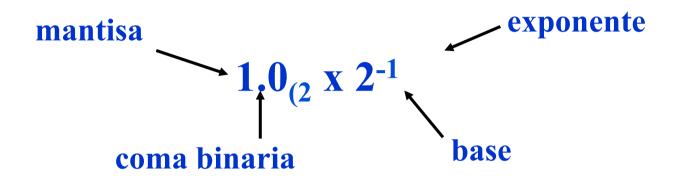
Cartagena 99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Potencias negativas


i	2 -i	
0	1.0	1
1	0.5	1/2
2	0.251/4	
3	0.125	1/8
4	0.0625	1/16
5	0.03125	1/32
6	0.015625	
7	0.0078125	
8	0.00390625	
9	0.001953125	

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70


Representación en coma flotante

- Cada número lleva asociado un exponente
- Permite adaptar número al orden de magnitud del valor a representar, trasladando la *coma decimal* —mediante un exponente
- Notación científica decimal → notación normalizada, solo un dígito distinto de 0 a la izquierda del punto

ARCOS Estructura de Computadores 70

Notación científica en binario

- Forma normalizada: Un 1(solo un dígito) a la izquierda de la coma
 - □ Normalizada: 1.0001 x 2-9
 - □ No normalizada: 0.0011×2^{-8} , 10.0×2^{-10}

Cartagena99

ARCOS

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Estándar IEEE 754

Estándar para el almacenamiento en coma flotante utilizado por la mayoría de los ordenadores.

.	Exponente sesgado	Parte significativa o mantisa
---	-------------------	-------------------------------

- Características (salvo casos especiales):
 - Exponente: en exceso, con sesgo 2ⁿ⁻¹ -1 (siendo n el nº de bits del Exponente
 - Mantisa: signo-magnitud, normalizada con bit implícito de la forma M = 1, xx...

Cartagena 99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Estándar IEEE 754

Formato	Bits	Base	Mantisa	Exponente	Exceso a
Simple	32	2	23 bits	8 bits	127
Doble	64	2	52 bits	11 bits	1023
Cuádruple	128	2	112 bits	15 bits	16383

Además existen formatos con base 10 de 32, 64 y 128 bits

http://speleotrove.com/decimal/

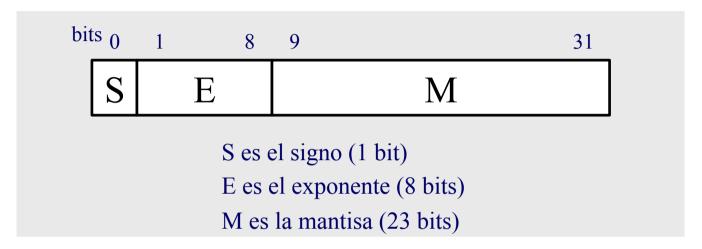
CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Números normalizados

- En este estándar los números a representar tienen que estar normalizados. Un número normalizado es de la forma:
 - ▶ 1,bbbbbbb × 2^e
 - \blacktriangleright mantisa: 1,bbbbbb (siendo b = 0, 1)
 - ▶ 2 es la base del exponente
 - e es el exponente

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70


Normalización

- Normalización: Es preciso normalizar la mantisa, es decir, el exponente se ajusta para que el bit más significativo de la mantisa sea 1
 - ▶ Ejemplo: **1,111001** x 2³ (ya está normalizado)
 - ▶ Ejemplo: 1111,101 x 2³ no está normalizado, se desplaza la ,
 - $1111,101 \times 2^3 = 1,111101 \times 2^6$
 - ▶ 1,111101 x 2⁶ si está normalizado

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Estándar IEEE 754 de precisión simple

El valor se calcula con la siguiente expresión (salvo casos especiales):

$$N = (-1)^S \times 2^{E-127} \times 1.M$$

donde:

S = 0 indica número positivo, S = 1 indica número negativo $0 \le E \le 255$ (E=0 y E=255 indican excepciones)

Bit implícito: Una vez normalizado, el bit más significativo es 1, no se

CLASES PARTICULARÉS, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Ejemplo

■ Representar 7,5 y 1,5 usando el formato IEEE 754

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

$$7,5 = 111,1 \times 2^0 = 1,111 \times 2^2$$

$$1,5 = 1,1 \times 2^0$$

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

$$7,5 = 111,1 \times 2^0 = 1,111 \times 2^2$$

Signo = 0 (positivo)

Exponente = 2 -> exponente a almacenar = 2 + 127 = 129 = 10000001

Mantisa = 1,111 -> mantisa a almacenar = 1110000 ... 0000

$$1,5 = 1,1 \times 2^0$$

Signo = 0 (positivo)

Exponente = 0 ->exponente a almacenar = 0 + 127 = 127 = 011111111

Mantisa = 1,1 -> mantisa a almacenar = $1000000 \dots 0000$

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

$$7,5 = 111,1 \times 2^0 = 1,111 \times 2^2$$

10000001 11100000000000000000000

$$1,5 = 1,1 \times 2^0$$

01111111

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Estándar IEEE 754 de precisión simple

■ Existencia de casos especiales:

(s) \times 0.mantisa \times 2⁻¹²⁶

Exponente	Mantisa	Valor especial
0 (0000 0000)	0	+/- 0 (según signo)
0 (0000 0000)	No cero	Número no normalizado
255 (1111 1111)	No cero	NaN (0/0, sqrt(-4),)
255 (1111 1111)	0	+/-infinito (según signo)
1-254	Cualquiera	Valor normal (no especial)

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Estándar IEEE 754 de precisión simple

■ Ejemplos:

- a) Calcular el valor correspondiente al número
 0 10000011 11000000000000000000
 dado en coma flotante según IEEE 754 de simple precisión
 - a) Bit de signo: $0 \Rightarrow$ número positivo
 - b) Exponente: $10000011_2 = 131_{10} \Rightarrow E 127 = 131 127 = 4$

 - d) Mantisa real: $1{,}1100 \Rightarrow 1 + 1 \times 2^{-1} + 1 \times 2^{-2} = 1{,}75$

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

Rango en estándar IEEE 754 de precisión simple

- Rango de magnitudes representables sin considerar el signo:
 - ☐ Menor número normalizado:

■ Mayor número normalizado

Truco:

Cartagena99

Rango en estándar IEEE 754 de precisión simple

- Rango de magnitudes representables sin considerar el signo:
 - ☐ Menor número no normalizado:

$$0.000000000000000000001_2 \times 2^{-126} = 2^{-149}$$

☐ Mayor número no normalizado

Truco:

Cartagena99

¿Cuántos números no normalizados distintos de cero se pueden representar?

		(s) \times 0.mantisa \times 2	126
Exponente	Mantisa	Valor especial	
0 (0000 0000)	No cero	Número no normalizado	

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

¿Cuántos números no normalizados distintos de cero se pueden representar?

		(s) \times 0.mantisa \times 2 ⁻¹²⁶
Exponente	Mantisa	Valor especial
0 (0000 0000)	No cero	Número no normalizado

Solución:

□ 23 bits para la mantisa (distinta de cero)

723 Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Representación discreta

■ Disminuye la densidad hacia infinito

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

--

Ejercicio

- Sea f(1,2) = número de floats entre 1 y 2
- Sea f(2,3) = número de floats entre 2 y 3
- ¿Cuál es mayor f (1, 2) o f (2, 3)?

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

Ejercicio

- Sea f(1, 2) = número de floats entre 1 y 2
- Sea f(2,3) = número de floats entre 2 y 3
- \blacksquare ¿Cuál es mayor f (1, 2) o f (2, 3)?
- Solución:

$$\Box$$
 1 = 1,0 × 2⁰

$$\Box$$
 2 = 1,0 × 2¹

$$\Box$$
 3 = 1,1 × 2¹

- ☐ Entre el 1 y el 2 hay 2²³ números

Fintre el 2 v el 3 hay 222 números CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Curiosidad

10011001100110011001101

3.9999998 e-1

01111011 1001100110011001100

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Ejemplo

■ Indique el valor binario en IEEE754 y el valor decimal del siguiente número hexadecimal representado en IEEE754 de 32 bits: 3FE00000

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

■ El valor binario:

1110 0000 0000 0000 0000 0000

■ El valor decimal:

0011 1111 1110 0000 0000 0000 0000 0000

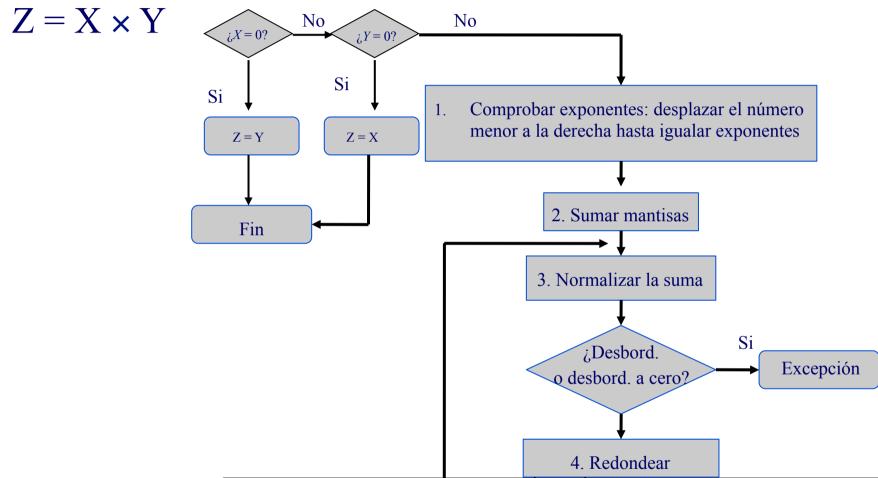
- □ Signo: 0
- Exponente: $0111111111 \Rightarrow 127-127 = 0$

Por tanto, el valor es: $+1 \times 1,75 \times 2^0 = 1,75$

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Sumas y restas:


- 1) Comprobar valores cero.
- 2) Ajuste de mantisas (ajuste de exponentes).
- 3) Sumar o restar las mantisas.
- 4) Normalizar el resultado.

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

Suma y resta

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Ejemplos de sumas:

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Se restan los exponentes:

```
E_1 = 10000001
                              \Rightarrow exponente real = 129 -127 = 2
E_2 = 011111111 -
                              \Rightarrow exponente real = 127
     00000010 = 2_{(10)}
```

- Luego se desplaza la mantisa del número de exponente menor $(1.M_2)$ dos lugares a la izquierda (E_1-E_2) para igualar los exponentes, incluyendo el bit implícito:

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

■ Se suman las mantisas $1.M_1$, y $1.M_2$ desplazada:

- El resultado es 10.01×2^2
- Se normaliza el resultado ajustando el exponente: $1.001 \text{ x} \times 2^3 = 9_{(10)}$
- El resultado final es:

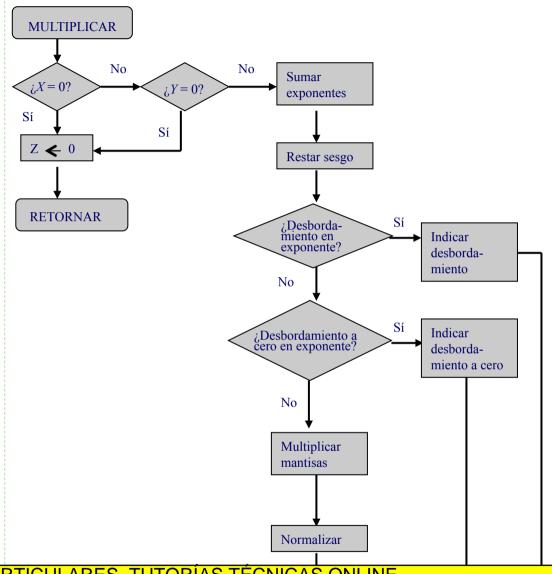
- \blacksquare 0 \Rightarrow +
- \bullet e = 3 \Rightarrow E = 127 + 3 = 10000010

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- -

- Multiplicación y división:
 - 1. Comprobar valores cero.
 - 2. Sumar (restar) exponentes.
 - 3. Multiplicar (dividir) mantisas (teniendo en cuenta el signo).
 - 4. Normalizar.
 - 5. Redondear.

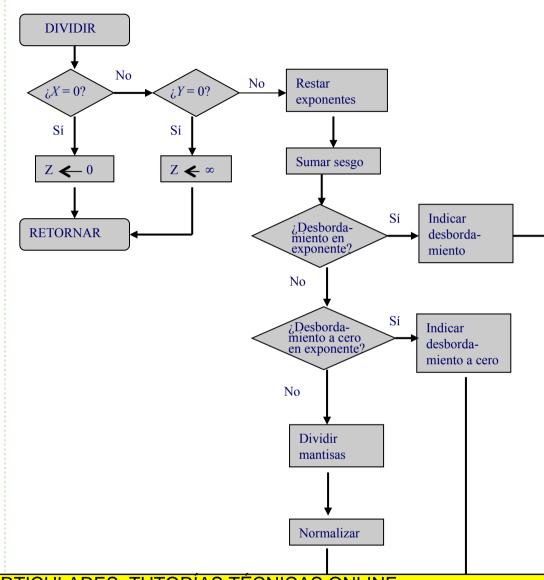


CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

Multiplicación en coma flotante

$$Z = X \times Y$$


Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

División en coma flotante

$$Z = X / Y$$

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Ejemplo

■ Usando el formato IEEE 754, multiplicar 7,5 y 1,5 paso a paso

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

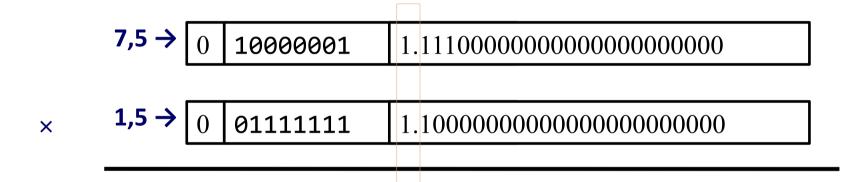
Solución (1)

$$7,5 \times 1,5 = (1,111_{2} \times 2^{2}) \times (1,1_{2} \times 2^{0})$$

$$= (1,111_{2} \times 1,1_{2}) \times 2^{(2+0)}$$

$$= (10,1101_{2}) \times 2^{2}$$

$$= (1,01101_{2}) \times 2^{3}$$

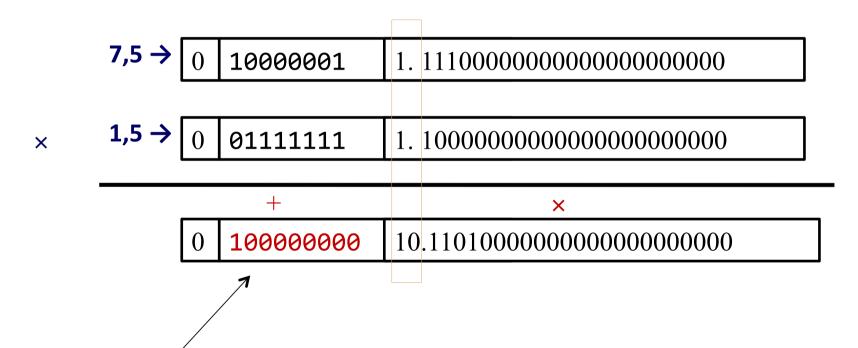

$$= 11,25$$

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Solución (2)

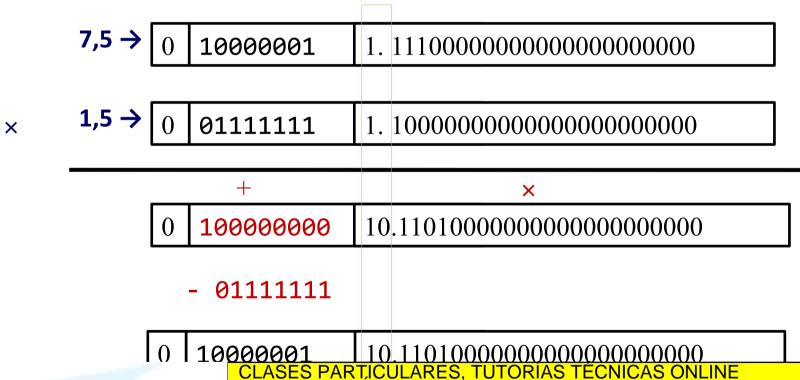
Se separan exponentes y mantisas y se añade el bit implícito


Se añade el bit implícito para operar

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Solución (3)

Se suman los exponentes y se multiplican las mantisas



Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Solución (4)

Se resta el sesgo al exponente (127)

Cartagena99

CLASES PARTICULARES, TUTÓRÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Solución (5)

■ Normalizar el resultado

	7,5 →	0 10000001	1.1110000000000000000000000000000000000
×	1,5 →	0 0111111	1.1000000000000000000000000000000000000
	11,25	0 10000010	1.0110100000000000000000000000000000000

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Solución (6)

■ Se elimina el bit implícito

11,25

10000010

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Redondeo

- El hardware de coma flotante añade dos bits extra (bits de guarda) de precisión antes de operar
- Después de operar hay que eliminarlos: redondeando
- El redondeo también ocurre cuando se convierte:
 - ☐ Un valor de doble a simple precisión
 - ☐ Un valor en coma flotante a entero

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

Dígitos de guarda. Justificación

Sumar 2,56 x 10⁰ y 2.34x 10² suponiendo que solo tenemos tres dígitos decimales significativos:

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Dígitos de guarda. Justificación

Sumar 2,56 x 10⁰ y 2.34x 10² suponiendo que solo tenemos tres dígitos decimales significativos pero se utilizan dos dígitos de guarda

$$2,56 \times 10^{0}$$
 + $2,34 \times 10^{2}$

$$2,5600 \times 10^{0}$$

$$+2,3400x 10^{2}$$

Se añaden los dígitos de guarda

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Dígitos de guarda. Justificación

■ Sumar 2,56 x 10⁰ y 2.34x 10² suponiendo que solo tenemos tres dígitos decimales significativos pero se utilizan dos dígitos de guarda

$$2,5600 \times 10^{0}$$
 $0,0256 \times 10^{2}$ $+ 2,3400 \times 10^{2}$ $+ 2,3400 \times 10^{2}$

Se ajusta el exponente

 $2,3656 \times 10^2$

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLÍNE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

Modos de rendondeo en IEEE 754

- Redondeo hacia $+\infty$
 - \square Redondeo "hacia arriba": $2.001 \rightarrow 3, -2.001 \rightarrow -2$
- ■Redondeo hacia ∞
 - □ Redondea "hacia abajo": $1.999 \rightarrow 1, -1.999 \rightarrow -2$
- ■Truncar
 - □ Descarta los últimos bits
- ■Redondeo al más cercano

$$\square 2.4 \rightarrow 2$$

$$\square 2.6 \rightarrow 3$$

$$\square 2.5 \rightarrow 2$$

$$\square 3.5 \rightarrow 4$$

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

Asociatividad

■ La coma flotante no es asociativa

$$x = -1.5 \times 10^{38}, y = 1.5 \times 10^{38}, y z = 1.0$$

$$(x + y) + z = (-1.5 \times 10^{38} + 1.5 \times 10^{38}) + 1.0$$

$$= (0.0) + 1.0 = 1.0$$

- Las operaciones coma flotante no son asociativas
 - ☐ Los resultados son aproximados

□ 1.5 × 10³⁸ es mucho más grande que 1.0 CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Conversión int → float → int

```
if (i == (int)((float) i)) {
    printf("true");
```

- No siempre es cierto
- Muchos valores enteros grandes no tienen una representación exacta en coma flotante
- ¿Qué ocurre con double?

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Ejemplo

- El número 133000405 en binario es:
 - □ 111111011011011011011010101 (27 bits)
- $11111110110110110110011010101 \times 2^{0}$
- Se normaliza
 - \square 1, 1111110110110110110011010101 \times 2²⁶
 - \Box S = 0 (positivo)
 - \Box e = 26 \rightarrow E = 26 + 127 = 153
 - \square M = 111110110110110110011010 (se pierden los 3 últimos bits)
- El número realmente almacenado es

111110110110110110011010 × 226 = CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Cartagena

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Conversión float → int → float

```
if (f == (float)((int) f)) {
  printf("true");
}
```

- No siempre es cierto
- Los números con decimales no tienen representación entera

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -